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This paper reports a new generalized dispersion equation and a intersection between the real parts of effective propagation 
constants for TE0 and TM0 and TE1 and TM1 modes as a function of number of glass layers in a multiple superconducting 
quantum well optical waveguide where the lossless glass layers have refractive index lower than that of the lossy 
superconducting layers. For the imaginary parts of the effective propagation constants, the intersections appear between 
TE0, TE1, TE2 modes or between TM0, TM1, TM2 modes. An increase in number of the quantum well, which is equivalent 
with an increase in refractive index, leads to a tighter confinement of the TE and TM modes to the core region.  
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1. Introduction  
 
Numerical simulation of the optical and electronic 

properties of a structure containing multiple quantum 
wells presents difficulties since the refractive index and 
the effective mass vary significantly and the widths of 
wells and barriers are very small [1-2]. The bandgap 
discontinuities of the quantum wells and barriers confine 
the carries (electrons and holes) to the active core region, 
forcing them to occupy a planar region and these particles 
can only have discrete energy values. Furthermore, the 
waveguide structure confines the optical field to the same 
region.   
 

 
 

Fig. 1. The real part of the refractive index profile for a 
multiple superconducting well structure. The inset is a 

structure with a single glass layer. 

 The TE and TM modes for a superconducting 
multiple quantum well structure (Fig. 1) satisfy the 
equations [2]  
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N is number of the glass layers, N +1 is number of the 
superconducting layers, a and b are the thicknesses of the 
alternating layers, Λ = a + b is a periodicity length, L = NΛ 
+b is the total thickness of the waveguide, n1 is the 
refractive index of the glass layers, n2 is the refractive 
index of the superconducting (YBCO) quantum wells, n3 
is the refractive index of the claddings (air), β is the 
propagation constant, and k is the free space wave number. 
For the lowest confined (guided) state propagation 
constant (kn3 < Re (β) < kn1< Re (kn2)) we have a 
sinusoidal behaviour of the field in well and an 
exponential decay in claddings. We apply the boundary 
conditions for the TE (TM) modes [Ψ = Ey and dΨ/dx, (Ψ 
= Hy and (1/n2) (dΨ/dx)) are continuous at each interface]. 
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Fig. 2. The    real  part    and   imaginary   parts  of  the 
fundamental   field   profiles   (- Ey, - - Hy) of a multiple 

superconducting   well   waveguide with 55 glass   layers      
(a = 15nm,   b = 20nm)   as   a   function   of   the  depth 

distance. 
 

In this paper we give a new generalized dispersion 
equation and determine the effective propagation 
constants for a superconducting multiple quantum well 
structure. 

 
 
2. Multiple superconducting quantum well  
    optical waveguide  
 
Our dispersion equations [2], for determining β of TE 

modes (similar with the numerical Runge-Kutta method), 
can be generalized and extended to the TM modes:  
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where ξ  reads as 0 for TE modes and 1 for TM modes.  

Also, we have solved the wave equations and 
Schrödinger equations for the given boundary conditions 
(the Dirichlet boundary condition at the ends of the 
interval where the wave function can be approximated 
with 0 and the Neuman boundary condition for each 
coordinate of the interfaces) by using the Galerkin’s 
variant of the finite element method, with triangular grid 
and variable step [3]. 

 
3. Numerical results and conclusion  
 
The investigated multiple superconducting quantum 

well optical waveguide structure (Fig.1) at wavelength λ = 
1.55μm consist of 56 lossy superconducting layers, each 
of thickness  b = 20nm, interspersed with 55 lossless glass 
layers of width a = 15nm. The refractive indices of the 
barriers (glass), superconducting quantum wells (YBCO), 
and cladding materials (air) are n 1 = 07.2 , n 2 = 

j536.132 .2 − [4] and n 3 = 1, respectively. 

 

 
 

Fig. 3. The real part of the exact effective propagation 
constants as a function of number of glass layers for the 
modes TE0, TM0, TE1, TM1, TE2 and TM2 of the multiple 
superconducting quantum well structure (a = 15nm, b = 

20nm). 
 

Our calculated value of the effective propagation 
constant for TE0, TM0, TE1, TM1, TE2 and TM2 modes are 
1.47965 – 0.29278j, 1.52824 – 0.23763j, 1.36852 – 
0.30252j, 1.38329 – 0.25685j, 1.16682 – 0.31820j and 
1.10835 – 0.26473j, respectively. Fig. 2. shows the real 
part and imaginary parts of the fundamental field profiles 
(- Ey, - - Hy) of this multiple superconducting well 
waveguide as a function of the depth distance.  

 

 
   

Fig. 4. The   imaginary    part    of   the   exact effective 
propagation constants as a function of number of glass 
layers  for the modes TE0, TM0, TE1, TM1, TE2 and TM2 
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of the multiple superconducting quantum well structure 
(a = 15nm, b = 20nm). 

The field amplitude has been normalized to a 
maximum value of unity. The maximum real values of the 
field intensity for TE0 and TM0 modes are in the middle of 
the waveguide structure where the lossless glass layer has 
refractive index lower than that of the lossy 
superconducting layers. This phenomen of confining and 
guiding light in low index material can be explained by 
total internal reflection when the glass gap is narrower 
than the characteristic decay length of the evanescent tail 
of the modes inside the glass layer and the tails merge into 
a high intensity. A similar situation appears in photonic 
crystal slotted slab waveguides [5]. Figs. 3 - 4. show the 
real and imaginary parts of the exact effective propagation 
constants as a function of number of glass layers for the 
TE0, TM0, TE1, TM1, TE2 and TM2 modes. 

As another example, we have calculated the exact 
value of the effective index β/k for a superconducting 
quantum well waveguide with the same thickness 
(1945nm) at wavelength λ = 1.55μm which consist of 11 
lossy superconducting layers, each of thickness b = 95nm, 
interspersed with 10 lossless glass layers of width a = 
90nm. Our calculated value of the effective propagation 
constant for TE0, TM0, TE1, TM1, TE2 and TM2 modes are 
1.46857 – 0.26682j, 1.51710 – 0.20957j, 1.35984 – 
0.27845j, 1.37590 – 0.22957j, 1.16302 – 0.29715j and 
1.10922 – 0.23954j, respectively. In contrast with the first 
example, now the maximum real values of the field 
intensity for TE0 and TM0 modes are in the middle of the 
waveguide structure where the lossy superconducting 
layer has refractive index higher than that of the lossless 
glass layers. Figs. 5 - 6. show the real and imaginary parts 
of the exact effective propagation constants as a function 
of number of glass layers for the TE0, TM0, TE1, TM1, TE2 
and TM2 modes. 
 

 
Fig. 5. The real part of the exact effective propagation 

constants as a function of number of glass layers for the 
modes TE0, TM0, TE1, TM1, TE2 and TM2 of the multiple 
superconducting quantum well structure (a = 90nm, b = 

95nm). 

 

 
 

Fig. 6. The     imaginary     part   of   the exact    effective 
propagation  constants  as a function of number of glass 
layers   for the modes TE0, TM0, TE1, TM1, TE2 and TM2 
of   the multiple superconducting quantum well structure 

(a = 90nm, b = 95nm). 
 
For the real parts (Fig. 3 and Fig. 5) of effective 

propagation constants there is a intersection between the 
TE0 and TM0, TE1 and TM1, TE2 and TM2 modes as a 
function of number of glass layers in a multiple 
superconducting quantum well optical waveguide where 
the lossless glass layers have refractive index lower than 
that of the lossy superconducting layers. For the imaginary 
parts (Fig. 4 and Fig. 6) of the effective propagation 
constants, the intersections appear between TE0, TE1, TE2 
modes or between TM0, TM1, TM2 modes. This behaviour 
can be used to superconductive traveling wave 
photodetectors which are insensitive to two of 
polarizations [4,6]. 

An increase in number of the quantum wells 
(equivalent with an increase in refractive index) leads to a 
tighter confinement of the TE0[2] and TM0 modes to the 
core region of the waveguide. For the same thickness of 
the multiple superconducting waveguide structure, the 
values of the effective propagation constants are strongly 
dependent on the number and distribution of the 
superconductor and glass layers.  
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